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Abstract: Information divergence measures are well known in the literature of Information Theory and 

Statistics. Information divergence measures play an important role in pattern recognition and information 

retrieval. In this paper we will establish an upper and lower bounds of Relative Jenson-Shannon divergence, 

Relative arithmetic –geometric divergence, Kullback-Leibler divergence and Triangular discrimination in terms 

of Symmetric chi-square divergence measure using a new f-divergence measure and inequalities. Numerical 

bounds of well-known divergence measures are also studied. 
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1. INTRODUCTION  
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be the set of complete finite discrete probability distributions.  There are many information and divergence 

measures exist in the literature on information theory and statistics. In this section we present some properties of 

new f-divergence measure introduced in Jain & Saraswat [7] & [8] and its particular cases which are interesting 

in areas of information theory and statistics is given by 
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                              1.2 

Where   :f     is a convex function and P, Q ϵ 
n . 

 

Proposition 1.1 Let :[0, )f    be convex and , nP Q  with 1n nP Q   then we have the 

following inequality  

( , ) (1)fS P Q f                                                     1.3                                                                      

Equality holds in (1.3) iff  

, 1,2,...,i ip q i n                                                   1.4                                                              

 

Corollary 1.1.1 (Non-Negativity of New f-divergence measure) Let :[0, )f    be convex and 

normalized i.e. 

     f(1)=0                                                                               1.5 

Then for any , nP Q  from (1.3) of proposition 1.1 and (1.5), we have the inequality  

       
( , ) 0fS P Q                                                            1.6                                                                                                                  

If f is strictly convex, equality holds in (1.6) iff 

   
, 1,2,...,i ip q i n                                                          1.7                                                                                                       

and  

   
( , ) 0 iff fS P Q P Q                                                       1.8  

 

Proposition 1.2 Let 1 2 and f f  are two convex functions and 1 2g af bf   then 

1 2
( , ) ( , ) ( , )g f fS P Q aS P Q bS P Q  , Where , nP Q . 
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It is shown that we shall derive some well-known divergence measures using new f-divergence measure such as 

Relative Jenson-Shannon divergence [11], Relative Arithmetic-Geometric divergence [12], Kullback-Leibler 

divergence [4] and   Triangular discrimination [1], Chi- square divergence measure [9], Symmetric Chi- square 

divergence measure [2].    In this section an inequality of new f-divergence in terms of Symmetric Chi- square 

divergence measure is established in section 3.  Using the inequality of section 3, bounds of various particular 

measures are found in terms of Symmetric chi-square divergence measure in section 4. Numerical bounds of 

some well-known divergence measures are discussed in section 5. 

 

We now give some examples of well-known information divergence measures which are obtained from new f-

divergence measure.             

 If
1

( ) (2 1) log(2 1),
2

f t t t t      then

 

Kullback-Leibler divergence measure is given by 
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                                                    1.9 

  If  
2

( ) 1f t t    then Chi-square divergence measure is given by  
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 If 
 

2
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( ) ,
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t t
f t t
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then symmetric chi-square divergence is given by  
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 If ( ) logf t t    then relative Jensen-Shannon divergence measure is given by  
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                                     1.12       

 If ( ) logf t t t  then

 

relative arithmetic-geometric divergence measure is given by 
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                         1.13 

  If 

2( 1)
( ) , 0

t
f t t

t


     then Triangular discrimination is given by 
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2. SYMMETRIC CHI-SQUARE DIVERGENCE MEASURE 
 

Let ( )f t  be a convex function and normalized i.e. (1) 0;f  which is given by 

2(1 ) 1
( ) ,

2 1 2

t t
f t t

t


  

                                                            2.1

 

      
 

3 2
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4 –  7  4  –  1
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t t t
f t
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                                                         2.2 

  3

1 1
  ''  1  > 0,

(2 1) 2
f t t

t

 
    

 
                                                2.3
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 ''    0f t  . Hence function is convex. 

 

Fig. 2.1Graphical representation of ( )f t  

Applying properties of new f-divergence measure on ( )f t , we get   
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                                              2.4 

            

  2

1

( )

8

n
i i i i

i i i

p q p q

p q

 


1
( , )

8
P Q                                      2.5                                                                                                                                                                                                                   

         

1
( , ) ( , )

8
fS P Q P Q 

                                                    2.6

 

Where ( , )P Q  is Symmetric chi-square divergence measure 

 

3. NEW INFORMATION INEQUALITY  
 

The following theorem concerning an upper and lower bound for a new f-divergence measure in terms of the 

Symmetric Chi-Square divergence measure holds. 

The result are on similar lines to the result presented by Dragomir[1] and Jain and Saraswat[4-5]. 

Theorem 3.1:  Let us consider the generating mapping 1
: ,  

2
mF
 

  
 

 is normalized i.e. f(1)=0 and 

satisfies the assumptions. 

(i)  f is twice differentiable on (r, R), where 0 ≤ r ≤ 1≤ R ≤ ∞ 

(ii)  There exist constants m, M such that
 

            
3

3

{(2 1) ''( )}
, t r,R .

{(2 1) 1}

t f t
m M

t

 
    

  
                            3.1                                                                        

 

If P, Q are discrete probability distributions satisfying the assumptions 

            

( )
, {1,2,3......... }

2

i i
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p q
r r R i n
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                              3.2
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Then we have the inequality 

       
( , ) ( , ) ( , )

8 8
f

m M
P Q S P Q P Q   

                                               3.3 

Proof: Define a mapping   21 ( 1) 1
: , , ( ) , .

2 2 1 2
m m

t t
F F t m t

t

  
      

   

                                                                                       

 Then (.)mF  is normalized and twice differentiable, since 

      

3

3
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(2 1)
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t
F t f t m
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                                  3.4

 
                       

 

For all t(r, R), it follows that (.)mF  is convex on (r, R).  Applying non-negativity property of f-divergence 

functional for (.)mF  and by proposition 1.2, we may state that 
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                                              3.5
                                                                                                                 

 

From where the  first inequality of (3.3) results. 

Now we again Define a mapping

21 ( 1)
: , , ( ) ( )

2 2 1
M M

t t
F F t M f t

t

  
     

   
, which is obviously 

normalized, twice differentiable and by (3.1), convex on (r, R).  Applying non-negativity property of f-

divergence functional for  (.)mF  and Proposition 1.2, we obtain the second part of (3.3) i.e. 

        
0 ( , ) ( , )

8
f

M
P Q S P Q  

                                                   3.6
           

 

From (3.5) and (3.6) give the result (3.3). 
 

4. RESULTS 
 

In this section we established bounds of particular well known divergence measures in terms of Symmetric Chi-

Square divergence using inequality of (3.3) of Theorem 3.1 which may be interested in Information Theory and 

statistics. 

The result is on similar lines to the result presented by Dragomir [1] and Jain & Saraswat [4-5]. 

Proposition 4.1: Let , nP Q  be two probability distributions with the property that 
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Then we have the following inequality
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Proof: Consider the mapping  : 0,f     
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( ) log , '( ) , ''( ) 0, 0f t t f t f t t
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So function is convex and normalized i.e.  (1) 0f   
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Define  
                    

:[ , ] ,g r R 
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''( ) 0 at 1.10,  It is maximumg t t 

  It is clear that g(t) is monotonic increasing on  1
2
,1.1   and monotonic decreasing on   1.10, which shows 

that function g(t) has minimum realized at 0 1.1020 1.10t    .Then obviously  

[ , ]sup ( ) ( ) (1.10) 0.5234t r RM g t g R g    , 
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                              4.2                     
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  from equation (1.9),(3.3)&(4.2) 

Then We get inequality (4.1)  

Proposition 4.2: Let , nP Q  be two probability distributions satisfying (3.2) 

  Then we have the following inequality 
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Proof: consider the mapping  : 0,f    
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''( ) 0,  at 1.28, It is maximum. g t t   

It is clear that g(t) is monotonic increasing on  1
2
,1.28   and monotonic decreasing on   1.28, . 

 Which shows that function g(t) has the maximum realized at 
0 1.2873 1.28t     

Then obviously 
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Also ( , ) ( , )fS P Q G Q P
 

From equation (1.10), (3.3) & (4.4) then We get result (4.3)  

Proposition 4.3: Let , nP Q  be two probability distributions satisfying (3.2), 

Then we have the following inequality 
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 It is clear that g(t) is monotonic increasing on  1
2
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Also ( , ) ( , )fS P Q KL P Q  

From equation (1.11), (3.3) & (4.6) give the result (4.5)
 

 

Proposition 4.4: Let , nP Q  be two probability distributions satisfying (3.2), 

Then we have the following inequality
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Also
1

( , ) ( , )
2

fS P Q P Q    

From equation (1.12), (3.3) & (4.8) give the result (4.7). 
 

5. NUMERICAL ILLUSTRATION 
 

In this section, we shall discuss the numerical bounds on Relative Jensen-Shannon divergence ( , )F Q P , 

Relative Arithmetic-Geometric divergence ( , )G Q P , Kullback-Leibler divergence ( , )KL P Q  and Triangular 

discrimination ( , )P Q  in terms of Symmetric chi-Square divergence measure using following table and 

results (4.1), (4.3), (4.5) and (4.7). 

Let P be the binomial probability distribution for the random valuable X with parameter (n=8 p=0.5) and Q its 

approximated normal probability distribution. The following table has given in [7] & [10]. 
 

Table 5.1 Binomial Probability Distribution (n=8   p=0.5) 
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x 0 1 2 3 4 5 6 7 8 

p (x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004 

q (x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005 

( ) ( )

2 ( )

p x q x

q x


 0.900 1.016 1.0240 0.997 0.985 0.997 1.024 1.016 0.900 

Here we simplified the values of 0.9, 1.024r R    
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