International Journal of Technical Research \& Science

NUMERICAL BOUNDS ON DIVERGENCES IN TERMS OF SYMMETRIC CHI-SQUARE DIVERGENCE MEASURE

Dr. Ram Naresh Saraswat, Ajay Tak
Department of Mathematics \& Statistics,
School of Basic Sciences, Manipal University Jaipur, 302026, INDIA
E-mail: sarswatrn@gmail.com, ajaytak86@gmail.com

Abstract

Information divergence measures are well known in the literature of Information Theory and Statistics. Information divergence measures play an important role in pattern recognition and information retrieval. In this paper we will establish an upper and lower bounds of Relative Jenson-Shannon divergence, Relative arithmetic -geometric divergence, Kullback-Leibler divergence and Triangular discrimination in terms of Symmetric chi-square divergence measure using a new f-divergence measure and inequalities. Numerical bounds of well-known divergence measures are also studied.

Keywords: Kullback-Leibler divergence measure, new f- divergence, Symmetric Chi-square divergence etc.

1. INTRODUCTION

Let

$$
\Gamma_{n}=\left\{p=\left(p_{1}, p_{2}, p_{3}, \ldots \ldots \ldots \ldots p_{n}\right): p_{i} \geq 0, \sum_{i=1}^{m} p_{i}=1, n \geq 2\right\}
$$

be the set of complete finite discrete probability distributions. There are many information and divergence measures exist in the literature on information theory and statistics. In this section we present some properties of new f-divergence measure introduced in Jain \& Saraswat [7] \& [8] and its particular cases which are interesting in areas of information theory and statistics is given by

$$
S_{f}(P, Q)=\sum_{i=1}^{n} q_{i} f\left(\frac{p_{i}+q_{i}}{2 q_{i}}\right)
$$

Where $\quad f: \mathfrak{R}_{+} \rightarrow \mathfrak{R}_{+}$is a convex function and $\mathrm{P}, \mathrm{Q} \in \Gamma_{n}$.

Proposition 1.1 Let $f:[0, \infty) \rightarrow \Re$ be convex and $P, Q \in \Gamma_{n}$ with $P_{n}=Q_{n}=1$ then we have the following inequality

$$
S_{f}(P, Q) \geq f(1)
$$

Equality holds in (1.3)iff

$$
p_{i}=q_{i}, \forall i=1,2, \ldots, n
$$

Corollary 1.1.1 (Non-Negativity of New f-divergence measure) Let $f:[0, \infty) \rightarrow \mathfrak{R}$ be convex and normalized i.e.

$$
f(1)=0
$$

Then for any $P, Q \in \Gamma_{n}$ from (1.3) of proposition 1.1 and (1.5), we have the inequality

$$
S_{f}(P, Q) \geq 0
$$

If f is strictly convex, equality holds in (1.6) iff

$$
p_{i}=q_{i}, \forall i=1,2, \ldots, n
$$

and

$$
S_{f}(P, Q)=0 \text { iff } P=Q
$$

Proposition 1.2 Let f_{1} and f_{2} are two convex functions and $g=a f_{1}+b f_{2}$ then $S_{g}(P, Q)=a S_{f_{1}}(P, Q)+b S_{f_{2}}(P, Q)$, Where $P, Q \in \Gamma_{n}$.
www.ijtrs.com www.ijtrs.org

International Journal of Technical Research \& Science

It is shown that we shall derive some well-known divergence measures using new f-divergence measure such as Relative Jenson-Shannon divergence [11], Relative Arithmetic-Geometric divergence [12], Kullback-Leibler divergence [4] and Triangular discrimination [1], Chi- square divergence measure [9], Symmetric Chi- square divergence measure [2]. In this section an inequality of new f-divergence in terms of Symmetric Chi- square divergence measure is established in section 3. Using the inequality of section 3, bounds of various particular measures are found in terms of Symmetric chi-square divergence measure in section 4. Numerical bounds of some well-known divergence measures are discussed in section 5 .

We now give some examples of well-known information divergence measures which are obtained from new fdivergence measure.

- If $f(t)=(2 t-1) \log (2 t-1), \forall t>\frac{1}{2}$ then Kullback-Leibler divergence measure is given by

$$
S_{f}(P, Q)=\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}}=K L(P, Q)
$$

- If $f(t)=(t-1)^{2}$ then Chi-square divergence measure is given by

$$
S_{f}(P, Q)=\frac{1}{4}\left[\sum_{i=1}^{n} \frac{p_{i}^{2}}{q_{i}}-1\right]=\frac{1}{4} \chi^{2}(P, Q)
$$

- If $f(t)=\frac{t(t-1)^{2}}{(2 t-1)}, \forall t>\frac{1}{2}$ then symmetric chi-square divergence is given by

$$
S_{f}(P, Q)=\frac{1}{8}\left[\sum_{i=1}^{n} \frac{\left(p_{i}+q_{i}\right)\left(p_{i}-q_{i}\right)^{2}}{p_{i} q_{i}}\right]=\frac{1}{8} \Psi(P, Q)
$$

- If $f(t)=-\log t$ then relative Jensen-Shannon divergence measure is given by

$$
S_{f}(P, Q)=\sum_{i=1}^{n} q_{i} \log \left(\frac{2 q_{i}}{p_{i}+q_{i}}\right)=F(Q, P)
$$

- If $f(t)=t \log t$ then relative arithmetic-geometric divergence measure is given by

$$
S_{r}(P, Q)=\sum_{i=1}^{n}\left(\frac{p_{i}+q_{i}}{2}\right) \log \left(\frac{p_{i}+q_{i}}{2 q_{i}}\right)=G(Q, P)
$$

- If $f(t)=\frac{(t-1)^{2}}{t}, \forall t>0$ then Triangular discrimination is given by

$$
S_{f}(P, Q)=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{2\left(p_{i}+q_{i}\right)}=\frac{1}{2} \Delta(P, Q)
$$

2. SYMMETRIC CHI-SQUARE DIVERGENCE MEASURE

Let $f(t)$ be a convex function and normalized i.e. $f(1)=0$; which is given by

$$
\begin{gather*}
f(t)=\frac{t(1-t)^{2}}{2 t-1}, \forall t>\frac{1}{2} \\
f^{\prime}(t)=\left[\frac{4 t^{3}-7 t^{2}+4 t-1}{(2 t-1)^{2}}\right] \\
f^{\prime \prime}(t)=\left[1+\frac{1}{(2 t-1)^{3}}\right]>0, \forall t>\frac{1}{2}
\end{gather*}
$$

International Journal of Technical Research \& Science
$f^{\prime \prime}(t)>0$. Hence function is convex.

Fig. 2.1Graphical representation of $f(t)$
Applying properties of new f-divergence measure on $f(t)$, we get

$$
\sum_{i=1}^{n} \frac{\left(p_{i}+q_{i}\right)\left(p_{i}-q_{i}\right)^{2}}{8 p_{i} q_{i}}=\frac{1}{8} \Psi(P, Q)
$$

$$
S_{f}(P, Q)=\frac{1}{8} \Psi(P, Q)
$$

Where $\Psi(P, Q)$ is Symmetric chi-square divergence measure

3. NEW INFORMATION INEQUALITY

The following theorem concerning an upper and lower bound for a new f-divergence measure in terms of the Symmetric Chi-Square divergence measure holds.
The result are on similar lines to the result presented by Dragomir[1] and Jain and Saraswat[4-5].
Theorem 3.1: Let us consider the generating mapping

$$
F_{m}:\left(\frac{1}{2}, \infty\right) \rightarrow \mathfrak{R}
$$

is normalized i.e. $f(1)=0$ and satisfies the assumptions.
(i) f is twice differentiable on (r, R), where $0 \leq \mathrm{r} \leq 1 \leq \mathrm{R} \leq \infty$
(ii) There exist constants m, M such that

$$
m \leq\left[\frac{\left\{(2 t-1)^{3} f^{\prime \prime}(t)\right\}}{\left\{(2 t-1)^{3}+1\right\}}\right] \leq M, \forall \mathrm{t} \in(\mathrm{r}, \mathrm{R}) .
$$

If P, Q are discrete probability distributions satisfying the assumptions

$$
r \leq r_{i}=\frac{\left(p_{i}+q_{i}\right)}{2 q_{i}} \leq R<\infty, \forall i \in\{1,2,3 \ldots \ldots \ldots n\}
$$

www.ijtrs.com www.ijtrs.org

International Journal of Technical Research \& Science
Then we have the inequality

$$
\frac{m}{8} \Psi(P, Q) \leq S_{f}(P, Q) \leq \frac{M}{8} \Psi(P, Q)
$$

Proof: Define a mapping

$$
F_{m}:\left(\frac{1}{2}, \infty\right) \rightarrow \mathfrak{R}, F_{m}(t)-m\left(\frac{t(t-1)^{2}}{2 t-1}\right), \forall t>\frac{1}{2}
$$

Then $F_{m}($.$) is normalized and twice differentiable, since$

$$
\begin{gathered}
F_{m} "(t)=f "(t)-m\left[\frac{\left\{(2 t-1)^{3}+1\right\}}{(2 t-1)^{3}}\right] \\
F_{m}{ }^{\prime \prime}(t)=\frac{\left\{(2 t-1)^{3}+1\right\}}{(2 t-1)^{3}}\left[\frac{(2 t-1)^{3}}{\left\{(2 t-1)^{3}+1\right\}} f^{\prime \prime}(t)-m\right] \geq 0
\end{gathered}
$$

For all $\mathrm{t} \in(\mathrm{r}, \mathrm{R})$, it follows that $F_{m}($.$) is convex on (r, R). Applying non-negativity property of f$-divergence functional for $F_{m}($.$) and by proposition 1.2$, we may state that

$$
\begin{gathered}
0 \leq S_{F_{m}}(P, Q)=S_{f}(P, Q)-m S_{\frac{t(t-1)^{2}}{2 t-1}}(P, Q)=S_{f}(P, Q)-\frac{m}{8} \Psi(P, Q) \\
\Rightarrow 0 \leq S_{f}(P, Q)-\frac{m}{8} \Psi(P, Q)
\end{gathered}
$$

From where the first inequality of (3.3) results.
Now we again Define a mapping $F_{M}:\left(\frac{1}{2}, \infty\right) \rightarrow \Re, F_{M}(t)=M\left(\frac{t(t-1)^{2}}{2 t-1}\right)-f(t)$, which is obviously normalized, twice differentiable and by (3.1), convex on (r, R). Applying non-negativity property of fdivergence functional for $F_{m}($.$) and Proposition 1.2, we obtain the second part of (3.3) i.e.$

From (3.5) and (3.6) give the result (3.3).

$$
0 \leq \frac{M}{8} \Psi(P, Q)-S_{f}(P, Q)
$$

4. RESULTS

In this section we established bounds of particular well known divergence measures in terms of Symmetric ChiSquare divergence using inequality of (3.3) of Theorem 3.1 which may be interested in Information Theory and statistics.
The result is on similar lines to the result presented by Dragomir [1] and Jain \& Saraswat [4-5].
Proposition 4.1: Let $P, Q \in \mathrm{I}_{n}$ be two probability distributions with the property that

$$
r \leq r_{i}=\frac{\left(p_{i}+q_{i}\right)}{2 q_{i}} \leq R<\infty, \forall i \in\{1,2,3 \ldots \ldots . . n\}
$$

Then we have the following inequality

$$
\frac{1}{8} \min \left[\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\} r^{2}}, \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\} R^{2}}\right] \Psi(P, Q) \leq F(Q, P) \leq(0.0654) \Psi(P, Q)
$$

Proof: Consider the mapping $f:(0, \infty) \rightarrow \mathfrak{R}$

$$
f(t)=-\log t, f^{\prime}(t)=\left(\frac{-1}{t}\right), f^{\prime \prime}(t)=\left(\frac{1}{t^{2}}\right)>0, \forall t>0
$$

So function is convex and normalized i.e. $f(1)=0$

Define
International Journal of Technical Research \& Science

$$
\begin{gathered}
g:[r, R] \rightarrow \mathfrak{R}, g(t)=\left[\frac{(2 t-1)^{3} f^{\prime \prime}(t)}{\left\{(2 t-1)^{3}+1\right\}}\right] \\
g(t)=\left[\frac{(2 t-1)^{3}}{\left\{(2 t-1)^{3}+1\right\} t^{2}}\right] \\
g(t)=\left[\frac{1}{t^{2}}-\frac{1}{\left(8 t^{5}-12 t^{4}+6 t^{3}\right)}\right] \\
g^{\prime}(t)=\left[\frac{-2}{t^{3}}+\frac{\left(40 t^{4}-48 t^{3}+18 t^{2}\right)}{\left(8 t^{5}-12 t^{4}+6 t^{3}\right)^{2}}\right], \\
g^{\prime}(t)=0,\left(t_{0}=\frac{1}{2}, \frac{1}{2}, 1.1020 \approx 1.10\right) \\
g^{\prime \prime}(t)=\left[\frac{6}{t^{4}}-\frac{2\left(40 t^{4}-48 t^{3}+18 t^{2}\right)^{2}}{\left(8 t^{5}-12 t^{4}+6 t^{3}\right)^{3}}+\frac{\left(160 t^{3}-144 t^{2}+36 t\right)}{\left(8 t^{5}-12 t^{4}+6 t^{3}\right)^{2}}\right]
\end{gathered}
$$

$g^{\prime \prime}(t)<0$ at $t=1.10$, It is maximum
It is clear that $\mathrm{g}(\mathrm{t})$ is monotonic increasing on $\left(\frac{1}{2}, 1.1\right]$ and monotonic decreasing on $(1.10, \infty)$ which shows that function $\mathrm{g}(\mathrm{t})$ has minimum realized at $t_{0}=1.1020 \approx 1.10$. Then obviously $M=\sup _{t \in[r, R]} g(t)=g(R)=g(1.10)=0.5234$,
$m=\inf _{t \in[r, R]} g(t)=\min [g(r), g(R)]=\min \left[\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\} r^{2}}, \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\} R^{2}}\right]$
Also $S_{f}(P, Q)=\sum q_{i} \log \left(\frac{2 q_{i}}{p_{i}+q_{i}}\right)=F(Q, P)$ from equation (1.9),(3.3)\&(4.2)
Then We get inequality (4.1)
Proposition 4.2: Let $P, Q \in \Gamma_{n}$ be two probability distributions satisfying (3.2)
Then we have the following inequality

$$
\frac{1}{8} \min \left(\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\} r}, \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\} R}\right) \Psi(P, Q) \leq G(Q, P) \leq(0.0772) \Psi(P, Q)
$$

Proof: consider the mapping $f:(0, \infty) \rightarrow \mathfrak{R}$

$$
f(t)=t \log t, f^{\prime}(t)=1+\log t, f^{\prime \prime}(t)=(1 / t)>0, \forall t>0
$$

So function is convex and normalized i.e. $f(1)=0$
Define $g:[r, R] \rightarrow \mathfrak{R}$,

$$
\begin{gathered}
g(t)=\left[\frac{(2 t-1)^{3} f^{\prime \prime}(t)}{\left\{(2 t-1)^{3}+1\right\}}\right] \\
g(t)=\left[\frac{(2 t-1)^{3}}{\left\{(2 t-1)^{3}+1\right\} t}\right] \\
g(t)=\left[\frac{1}{t}-\frac{1}{\left(8 t^{4}-12 t^{3}+6 t^{2}\right)}\right] \\
g^{\prime}(t)=\left[\frac{-1}{t^{2}}+\frac{\left(32 t^{3}-36 t^{2}+12 t\right)}{\left(8 t^{4}-12 t^{3}+6 t^{2}\right)^{2}}\right], \quad g^{\prime}(t)=0,\left(t=\frac{1}{2}, \frac{1}{2}, 1.2873 \approx 1.28\right)
\end{gathered}
$$

International Journal of Technical Research \& Science

$$
g^{\prime \prime}(t)=\left[\frac{2}{t^{3}}-\frac{2\left(32 t^{3}-36 t^{2}+12 t\right)^{2}}{\left(8 t^{4}-12 t^{3}+6 t^{2}\right)^{3}}+\frac{\left(96 t^{2}-72 t+12\right)}{\left(8 t^{4}-12 t^{3}+6 t^{2}\right)^{2}}\right]
$$

$g^{\prime \prime}(t)<0$, at $t=1.28$, It is maximum.
It is clear that $\mathrm{g}(\mathrm{t})$ is monotonic increasing on $\left(\frac{1}{2}, 1.28\right]$ and monotonic decreasing on $(1.28, \infty)$.
Which shows that function $\mathrm{g}(\mathrm{t})$ has the maximum realized at $t_{0}=1.2873 \approx 1.28$
Then obviously
$M=\sup _{t \in[r, R]} g(t)=g(R)=g(1.28)=0.6183$

$$
m=\inf _{t \in[r, R]} g(t)=\min [g(r), g(R)]=\min \left[\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\} r}, \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\} R}\right]
$$

Also $S_{f}(P, Q)=G(Q, P)$
From equation (1.10), (3.3) \& (4.4) then We get result (4.3)
Proposition 4.3: Let $P, Q \in \Gamma_{n}$ be two probability distributions satisfying (3.2),
Then we have the following inequality

$$
\frac{1}{8}\left(\frac{4(2 r-1)^{2}}{\left\{(2 r-1)^{3}+1\right\}}, \frac{4(2 R-1)^{2}}{\left\{(2 R-1)^{3}+1\right\}}\right) \Psi(P, Q) \leq K L(P, Q) \leq(0.2645) \Psi(P, Q)
$$

Proof: Consider the mapping $f:\left(\frac{1}{2}, \infty\right) \rightarrow \mathfrak{R}$

$$
f(t)=(2 t-1) \log (2 t-1), f^{\prime}(t)=2\{1+\log (2 t-1)\}, f^{\prime \prime}(t)=\frac{4}{(2 t-1)}>0, \forall t>0
$$

So function is convex and normalized i.e. $f(1)=0$
Define $g:[r, R] \rightarrow \mathfrak{R}$,

$$
\begin{aligned}
& g(t)=\left[\frac{(2 t-1)^{3} f^{\prime \prime}(t)}{\left\{(2 t-1)^{3}+1\right\}}\right] \\
& g^{\prime}(t)=\frac{4(2 t-1)^{2}}{(2 t-1)^{3}+1} \\
& g^{\prime}(t)=\frac{16(2 t-1)}{(2 t-1)^{3}+1}-\frac{24(2 t-1)^{4}}{\left((2 t-1)^{3}+1\right)^{2}} \\
& g^{\prime}(t)=0,\left(t=\frac{1}{2}, \frac{1}{2}(2)^{\frac{1}{3}}+\frac{1}{2}=1.1299 \approx 1.13\right) \\
& g^{\prime \prime}(t)=\frac{32}{(2 t-1)^{3}+1}-\frac{288(2 t-1)^{3}}{\left((2 t-1)^{3}+1\right)^{2}}+\frac{288(2 t-1)^{6}}{\left((2 t-1)^{3}+1\right)^{3}}
\end{aligned}
$$

$g^{\prime \prime}(t)<0$, at $t=1.13$, So It is maximum.
It is clear that $\mathrm{g}(\mathrm{t})$ is monotonic increasing on $\left(\frac{1}{2}, 1.13\right]$ and monotonic decreasing on $(1.13, \infty)$. Which shows that function $\mathrm{g}(\mathrm{t})$ has the maximum realized at $t_{0}=1.1299 \approx 1.13$ we have two cases :
Then obviously
$M=\sup _{t \in[r, R]} g(t)=g(R)=g(1.12)=2.1165$
$m=\inf _{t \in[r, R]} g(t)=\min [g(r), g(R)]=\min \left[\frac{4(2 r-1)^{2}}{\left\{(2 r-1)^{3}+1\right\}}, \frac{4(2 R-1)^{2}}{\left\{(2 R-1)^{3}+1\right\}}\right]$

International Journal of Technical Research \& Science
Also $S_{f}(P, Q)=K L(P, Q)$
From equation (1.11), (3.3) \& (4.6) give the result (4.5)
Proposition 4.4: Let $P, Q \in \Gamma_{n}$ be two probability distributions satisfying (3.2),
Then we have the following inequality

$$
\begin{gather*}
\frac{1}{8} \min \left[\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\}}\left(\frac{2}{r}-\frac{4(r-1)}{r^{2}}+\frac{2(r-1)^{2}}{r^{3}}\right), \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\}}\left(\frac{2}{R}-\frac{4(R-1)}{R^{2}}+\frac{2(R-1)^{2}}{R^{3}}\right)\right] \Psi(P, Q) \\
\leq \frac{1}{2} \Delta(P, Q) \leq(0.1250) \Psi(P, Q)
\end{gather*}
$$

Proof: Consider the mapping $f:(0, \infty) \rightarrow \mathfrak{R}$

$$
f(t)=\frac{(t-1)^{2}}{t}, f^{\prime}(t)=\frac{2(t-1)}{t}-\frac{(t-1)^{2}}{t^{2}}, f^{\prime \prime}(t)=\left(\frac{2}{t}-\frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)>0, \forall t>0
$$

So function is convex and normalized i.e. $f(1)=0$
Define $g:[r, R] \rightarrow \mathfrak{R}$,

$$
\begin{gathered}
g(t)=\left[\frac{(2 t-1)^{3} f^{\prime \prime}(t)}{\left\{(2 t-1)^{3}+1\right\}}\right] \\
g(t)=\frac{(2 t-1)^{3}}{\left\{(2 t-1)^{3}+1\right\}\left(\frac{2}{t} \frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)} \\
g^{\prime}(t)=\frac{\left\{6(2 t-1)^{2}\left(\frac{2}{t}-\frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)\right\}}{\left((2 t-1)^{3}+1\right)}
\end{gathered}
$$

$$
+\frac{\left\{(2 t-1)^{3}\left(\frac{-6}{t^{2}}+\frac{12(t-1)}{t^{3}}-\frac{6(t-1)^{2}}{t^{4}}\right)\right\}}{\left((2 t-1)^{3}+1\right)}
$$

$$
-\frac{\left\{6(2 t-1)^{5}\left(\frac{2}{t}-\frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)\right\}}{\left((2 t-1)^{3}+1\right)}
$$

$$
g^{\prime}(t)=0,\left(t=\frac{1}{2}, 1\right)
$$

www.ijtrs.com www.ijtrs.org

$$
\begin{aligned}
& g^{\prime \prime}(t)=\frac{\left\{24(2 t-1)\left(\frac{2}{t}-\frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)\right\}}{\left((2 t-1)^{3}+1\right)} \\
& +\frac{\left\{12(2 t-1)^{2}\left(\frac{-6}{t^{2}}+\frac{12(t-1)}{t^{3}}-\frac{6(t-1)^{2}}{t^{4}}\right)\right\}}{\left((2 t-1)^{3}+1\right)} \\
& -\frac{\left\{96(2 t-1)^{4}\left(\frac{2}{t}-\frac{4(t-1)}{t^{2}}+\frac{2(t-1)^{2}}{t^{3}}\right)\right\}}{\left((2 t-1)^{3}+1\right)^{2}} \\
& +\frac{\left\{(2 t-1)^{3}\left(\frac{24}{t^{3}}-\frac{48(t-1)}{t^{4}}+\frac{\left.24(t-1)^{2}\right)}{t^{5}}\right)\right\}}{\left((2 t-1)^{3}+1\right)} \\
& -\frac{\left\{12(2 t-1)^{5}\left(\frac{-6}{t^{2}}+\frac{12(t-1)}{t^{3}}-\frac{6(t-1)^{2}}{t^{4}}\right)\right\}}{}
\end{aligned}
$$

$g^{\prime \prime}(t)<0$, at $t=1$, It is maximum.
It is clear that $\mathrm{g}(\mathrm{t})$ is monotonic increasing on $\left(\frac{1}{2}, 1\right]$ and monotonic decreasing on $(1, \infty)$. which shows that function $\mathrm{g}(\mathrm{t})$ has the maximum realized at $t_{0}=1$.
Then obviously
$M=\sup _{t \in[r, R]} g(t)=g(R)=g(1)=1$

$$
m=\inf _{\text {fer }}(R) g(t)=\min [g(r), g(R)]
$$

$$
\left\{\frac{(2 r-1)^{3}}{\left\{(2 r-1)^{3}+1\right\}}\left(\frac{2}{r}-\frac{4(r-1)}{r^{2}}+\frac{2(r-1)^{2}}{r^{3}}\right), \frac{(2 R-1)^{3}}{\left\{(2 R-1)^{3}+1\right\}}\left(\frac{2}{R}-\frac{4(R-1)}{R^{2}}+\frac{2(R-1)^{2}}{R^{3}}\right)\right]
$$

Also $S_{f}(P, Q)=\frac{1}{2} \Delta(P, Q)$
From equation (1.12), (3.3) \& (4.8) give the result (4.7).

5. NUMERICAL ILLUSTRATION

In this section, we shall discuss the numerical bounds on Relative Jensen-Shannon divergence $F(Q, P)$, Relative Arithmetic-Geometric divergence $G(Q, P)$, Kullback-Leibler divergence $K L(P, Q)$ and Triangular discrimination $\Delta(P, Q)$ in terms of Symmetric chi-Square divergence measure using following table and results (4.1), (4.3), (4.5) and (4.7).
Let P be the binomial probability distribution for the random valuable X with parameter ($\mathrm{n}=8 \mathrm{p}=0.5$) and Q its approximated normal probability distribution. The following table has given in [7] \& [10].

Table 5.1 Binomial Probability Distribution ($\mathbf{n}=8 \quad \mathrm{p}=0.5$)

www.ijtrs.com www.ijtrs.org

International Journal of Technical Research \& Science

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathrm{p}(\mathrm{x})$	0.004	0.031	0.109	0.219	0.274	0.219	0.109	0.031	0.004
$\mathrm{q}(\mathrm{x})$	0.005	0.030	0.104	0.220	0.282	0.220	0.104	0.030	0.005
$\frac{p(x)+q(x)}{2 q(x)}$	0.900	1.016	1.0240	0.997	0.985	0.997	1.024	1.016	0.900

Here we simplified the values of $r=0.9, R=1.024$

$$
\begin{aligned}
& \frac{1}{8} \min \left[\frac{(2(0.9)-1)^{3}}{\left\{(2(0.9)-1)^{3}+1\right\}(0.9)^{2}}, \frac{(2(1.024)-1)^{3}}{\left\{(2(1.024)-1)^{3}+1\right\}(1.024)^{2}}\right] \Psi(P, Q) \\
& \leq F(Q, P) \leq \frac{1}{8}(0.5234) \Psi(P, Q) \\
& \frac{1}{8} \min [0.4180,0.5103] \Psi(P, Q) \leq F(Q, P) \leq \frac{1}{8}(0.5234) \Psi(P, Q)
\end{aligned}
$$

$$
(0.0522) \Psi(P, Q) \leq F(Q, P) \leq(0.0654) \Psi(P, Q)
$$

$$
\begin{aligned}
& \frac{1}{8} \min \left(\frac{(2(0.9)-1)^{3}}{\left\{(2(0.9)-1)^{3}+1\right\}(0.9)}, \frac{(2(1.024)-1)^{3}}{\left\{(2(1.024)-1)^{3}+1\right\}(1.024)}\right) \Psi(P, Q) \\
& \leq G(Q, P) \leq \frac{1}{8}(0.6183) \Psi(P, Q) \\
& \frac{1}{8} \min [0.3762,0.5225] \Psi(P, Q) \leq G(Q, P) \leq \frac{1}{8}(0.6183) \Psi(P, Q)
\end{aligned}
$$

$$
(0.0470) \Psi(P, Q) \leq G(Q, P) \leq(0.0772) \Psi(P, Q)
$$

$$
\frac{1}{8}\left(\frac{4(2(0.9)-1)^{2}}{\left\{(2(0.9)-1)^{3}+1\right\}}, \frac{4(2(1.024)-1)^{2}}{\left\{(2(1.024)-1)^{3}+1\right\}}\right) \Psi(P, Q)
$$

$$
\leqq K L(P, Q) \leq \frac{1}{8}(2.1165) \Psi(P, Q)
$$

$$
\frac{1}{8} \min [1.6931,2.0423] \Psi(P, Q) \leq K L(P, Q) \leq \frac{1}{8}(2.1165) \Psi(P, Q)
$$

$$
(0.2116) \Psi(P, Q) \leq K L(P, Q) \leq(0.2645) \Psi(P, Q)
$$

$$
\begin{gathered}
\frac{1}{8} \min \left[\frac{(2(0.9)-1)^{3}}{\left\{(2(0.9)-1)^{3}+1\right\}}\left(\frac{2}{(0.9)}-\frac{4(0.9-1)}{(0.9)^{2}}+\frac{2(0.9-1)^{2}}{(0.9)^{3}}\right), \frac{(2(1.024)-1)^{3}}{\left\{(2(1.024)-1)^{3}+1\right\}}\left(\frac{2}{1.024}-\frac{4(1.024-1)}{(1.024)^{2}}+\frac{2(1.024-1)^{2}}{(1.024)^{3}}\right)\right] \Psi(P, Q) \\
\leq \frac{1}{2} \Delta(P, Q) \leq \frac{1}{8} \Psi(P, Q) \\
\frac{1}{8} \min [0.9290,0.9967] \Psi(P, Q) \leq \frac{1}{2} \Delta(P, Q) \leq \frac{1}{8} \Psi(P, Q)
\end{gathered}
$$

International Journal of Technical Research \& Science

$$
(0.1161) \Psi(P, Q) \leq \frac{1}{2} \Delta(P, Q) \leq(0.1250) \Psi(P, Q)
$$

REFERENCES

[1] Dacunha-Castella D., "Ecole d'Ete de probabilities de Saint"-Flour VII-1977 Berline, Heidelberg, NewYork:Springer 1978
[2] Dragomir S.S., V. gluscevic and C.E.M. Pearce, "Approximation for the Csiszar f-divergence via midpoint inequalities, in inequality theory and applications"- Y. J. Cho, J. K. Kim and S.S. dragomir (Eds), nova science publishers, inc., Huntington, new York, vol1, 2001, pp.139-154.
[3] Dragomir S.S., J.Sunde and C.Buse, "New Inequalities for Jeffreys Divergence measure", Tamusi Oxford Journal of Mathematical Sciences, 16(2) (2000), 295-309
[4] Kullback S. and R.A Leibler: "On information and sufficiency". Ann. Nath. Statistics 22(1951), 79-86.
[5] Jain K. C. and R. N. Saraswat, "Some bounds of Csiszar's f-divergence measure in terms of the wellknown divergence measures of Information Theory" International Journal of Mathematical Sciences and Engineering Applications, Vol. V No. 5 September 2011.
[6] Jain K. C. and R. N. Saraswat "Some New Information Inequalities and its Applications in Information Theory" International Journal of Mathematics Research, Volume 4, Number 3 (2012), pp. 295-307.
[7] Jain K.C. \& Saraswat R.N. (2012) "A New Information Inequality and its Application in Establishing Relation among various f-Divergence Measures" Journal of Applied Mathematics, Statistics and Informatics Vol. 8 No.1, pp. 17-32.
[8] Jain K.C. \& Saraswat R.N. (2013) "Some Bounds of Information Divergence Measures in Terms of Relative-Arithmetic Divergence Measure" International Journal of Applied Mathematics and Statistics Vol.32, No. 2 .
[9] Pearson K., "On the criterion that a give system of deviations from the probable in the case of correlated system of variables in such that it can be reasonable supposed to have arisen from random sampling", Phil. Mag., 50(1900), 157-172.
[10] Sibson R., "Information Radius", Z, Wahrs. undverw.geb. (14) (1969), 149-160
[11] Taneja I.J., "New Developments in generalized information measures", Chapter in: Advances in imaging and Electron Physics, Ed. P. W. Hawkes 91(1995), 37-135.
[12] Taneja I. J. and Pranesh Kumar, "Relative Information of type s, Csiszar f-divergence and information inequalities", Information Sciences, 166(1-4) (2004), 105-125
[13]Taneja I. J. and Pranesh Kumar, "On symmetric and non symmetric divergence measure and their generalizations", Chapter in: Advances in Imaging and Electron Physics, Ed. P. W. Hawkes, 91 (1995), 37136.

